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1 Introduction

Non-relativistic version of the anti-de Sitter (AdS) / conformal field theory (CFT) corre-

spondence [1, 2] is an interesting new horizon to string theory. The correspondence offers a

new arena of theoretical physics by providing a completely new approach to strongly corre-

lated condensed matter systems such as cold atoms in optical trap, high Tc superconductor

and quantum Hall effects. Conversely, the correspondence opens up an exciting possibility

that experimental as well as theoretical understanding of strongly correlated condensed
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matter systems may offer a new insight into quantization of gravity and string theory in a

suitable dual background.

Identification of physical observables in both the AdS and the CFT sides is the starting

point for quantitative study of the correspondence. In the relativistic case, a prescription

to compute the correlation functions of local observables (so-called GKPW relation [3, 4])

and of nonlocal observables such as Wilson loops [5, 6] were proposed immediately after

the advent of the AdS/CFT correspondence [7]. Drawing an analogy to the relativistic

AdS/CFT correspondence, a prescription to compute the correlation functions in the non-

relativistic AdS/CFT correspondence was proposed recently [1, 2, 8]. However, in all cases

studied so far, ’boundary’ of the spacetime dual to the non-relativistic CFT turned out

singular, so it was not obvious how to set up a sensible prescription. In this regard, though

partial success was reported, the proposed prescriptions are far from being rigorous and

should be considered at best heuristic.

In the non-relativistic AdS/CFT correspondences studied so far, apart from reinterpre-

tation of discrete light-cone quantization and R-symmetry twisting of relativistic conformal

field theories (see for example [9–11]), there is no concrete Lagrangian description of the

dual conformal field theory. This is a serious drawback against testing the correspondence.

One promising and distinguished candidate in this direction is the non-relativistic M2-

brane theory. The construction is simple: we begin with the worldvolume gauge theory

of N multiply stacked relativistic M2-branes at an orbifold singularity [12], introduce a

suitable supersymmetric mass deformation as in [13, 14], and then take an appropriate

non-relativistic limit. The resultant action, which we call as the non-relativistic ABJM

theory, has been reported in [15], and the (super)symmetry has been investigated.

In this paper, we study physical observables and their correlators in the non-relativistic

ABJM theories with gauge group U(N)×U(N) and Chern-Simons level k. The theory has

10 kinematical, 2 dynamical and 2 conformal supersymmetries, so these observables are

classifiable according to their supermultiplet structures. We shall various surprising fea-

tures that distinguishes the non-relativistic ABJM theory from the relativistic counterpart.

We first show that all local gauge invariant observables are zero-norm states and hence

all correlation functions among themselves are trivial. We will further show that a special

class of non-local observables, the Wilson loops and the ‘t Hooft loops, are topological in

the sense that their correlation functions coincide with those of the pure Chern-Simons

theory. By the holography, this suggests a peculiar topological nature of the string theory

defined on gravity dual.

We emphasize that the non-relativistic ABJM theory is not a topological field the-

ory but a physical theory with intricate multi-particle dynamics. For example, the theory

shows non-trivial S-matrices. The claim here is that if we restrict ourselves to correlation

functions involving a class of simple (local or non-local) gauge invariant observables stud-

ied in the context of the relativistic AdS/CFT correspondence, they exhibit topological

characteristic. Indeed, we find physically nontrivial correlation functions once we take ac-

count of less familiar observables involving monopole operators and multi-local operators.

In discerning topological versus physically nontrivial observables, we point out eigenvalue

of these operators to the mass operator in the underlying Schrodinger superalgebra plays

a prominent role.
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Related, we emphasize that quantum dynamics of the non-relativistic ABJM theory

gives rise to finite renormalization of the Chern-Simons level k → k+N . We also emphasize

that the dilatation operator of the theory acting on a single trace state is an identity to all

orders in ‘t Hooft coupling perturbation theory. This implies that there is no dynamical

excitation on the string worldsheet. From these, we learn a great deal of yet-to-be-found

candidate string theory and gravity dual to the non-relativistic ABJM theory. In particular,

we see that the gravity dual must have a geometry of curvature at string scale and string

theory defined on it must exhibit tensionless and topological characteristics.

We organized this paper as follows. In section 2, we review the non-relativistic ABJM

theory and its supersymmetries. In section 3, utilizing the established operator-state cor-

respondence to this theory, we study properties of local gauge invariant observables. We

show that all local operators have zero norm and their correlation functions vanish. We also

discuss gravity dual of this property and classify supersymmetry protected local operators.

In section 4, extending to nonlocal observables, we study Wilson loops. We show that they

are topological: their correlation functions are exactly the same as the pure Chern-Simons

theory. From this, we also find that string dual to the Wilson loop must be tensionless.

We also classify supersymmetric Wilson loops, which are natural extensions of the chiral

primary local operators. In section 5, we argue that there are also observables of nonzero

norm. We also study correlation functions involving these observables and show that they

are nontrivial — neither zero nor topological. In section 6, we highlight several quantum

aspects of the theory. We argue for the shift of the Chern-Simons coefficient and discuss its

implications. We also point out topological nature of non-relativistic spin chain on which

dilatation operator acts as an identity operator. This implies that there is no excitation on

the worldsheet of string dual. In section 7, we summarize our results and discuss various

implications and points for further study.

2 Non-relativistic ABJM theory

The non-relativistic ABJM theory with fourteen supercharges was first derived in [15] by

taking non-relativistic limit of the mass deformed ABJM theory1 (see also [16]). Sub-

sequently, a superfield formulation with manifest dynamical supersymmetry (SUSY) was

developed in [17]. In this paper, we follow the conventions and the notations used in [15].

2.1 Action

The Chern-Simons part of the non-relativistic ABJM theory is the same as the relativis-

tic theory and is given by a pair of U(N) Chern-Simons action with levels k and −k,
respectively:

SCS =
k

4π

∫

dtd2x ǫmnp Tr

[

Am∂nAp +
2i

3
AmAnAp −Am∂nAp −

2i

3
AmAnAp

]

. (2.1)

1In [15], less supersymmetric ABJM theories were also proposed. In this paper, we focus on the maxi-

mally supersymmetric case.
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Here, Am, Am are gauge potentials of U(N)×U(N). Gauge invariance of quantum dynamics

requires k integer-valued. Matter fields consist of bosons φA and fermions ψA, transforming

as (N,N) under the gauge group U(N)×U(N). Here, A = (a, a′) denotes the global SU(2)×
SU(2) indices: (1, 2, 1′, 2′). Note that in mass deformed theory the parity conjugation

exchanges not only the two U(N) gauge groups but also the two SU(2) R-symmetry groups.

Mass deformation of the ABJM theory preserving the N = 6 Poincaré supersymmetry

(but breaking Osp(6|4) superconformal invariance) introduces a mass scale m. The defor-

mation breaks the SU(4) R-symmetry to SU(2)×SU(2)×U(1). The U(1) is generated by

the generator diag.(+1
2 ,+

1
2 ,−1

2 ,−1
2 ). From the viewpoint of N = 2 superspace formula-

tion, the mass deformation of the relativistic ABJM theory arises only from the D-term

contribution to the scalar potential, none from the F-term. This may be seen as follows.

Assume that it arises from the F-term [W (φa, φa′

)]θ2+(h.c.). As the mass deformation

preserves SU(2)×SU(2) subgroup, the unique choice of holomorphic operators of scaling

dimension-2 are mTr(φaǫabφ
b ± φa′

ǫa′b′φ
b′). However, these operators can not be present

since they violate U(1) invariance and moreover vanishes identically upon taking trace over

the gauge group.

The non-relativistic limit is then obtained by taking the limit c → ∞ and keeping

in each fields the particle mode only — it turned out this is required to retain maximal

supersymmetry. Denoting the mass as m, action for the non-relativistic kinetic term is

given by2

Skin =
k

4π

∫

dtd2x

[

Tr(φ†A iD0φ
A) − 1

2m
Tr(DφA)†(DφA) (2.2)

+ Tr(ψ†A iD0ψA) +
1

2m
Tr(ψ†aD−D+ψa + ψ†a′

D+D−ψa′)

]

.

The last term is the Pauli interaction term, and can be rewritten as

1

2m
Tr(ψ†aD−D+ψa + ψ†a′

D+D−ψa′)

=
1

2m
Tr
[

ψ†a
(

D2ψa − F12ψa + ψaF 12

)

]

+
1

2m
Tr
[

ψ†a′(

D2ψa′ + F12ψa′ − ψa′F 12

)

]

.

The action for the quartic scalar self-interactions is given by3

Sbose =
k

4π

∫

dtd2x
1

4m
Tr
(

φaφ†[aφ
bφ†

b] − φa′

φ†[a′φ
b′φ†

b′]

)

, (2.3)

2Our notation for spacetime and spatial coordinates are µ = 0, 1, 2 and i = 1, 2, respectively. We

introduce V± = V ±V1 = ±iV2 for every vector fields. In particular, D± = D1 ± iD2, where D = (D1,D2)

are spatial components of the gauge covariant derivative of U(N)×U(N). Here and throughout, we also

rescaled the matter fields appropriately and put the coupling constant k/4π as overall factor to the action.
3A convenient convention would be to put 2m = 1. This will eliminate factors of 2m in the action

and supersymmetry transformations. For a book-keeping convenience, however, we shall keep this factor

explicit hereafter.
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whereas the action for quartic scalar-fermion interactions is given by

Sfermi =
k

4π

∫

dtd2x
1

4m
Tr
[

(φ†aφ
a + φ†a′φ

a′

)(ψ†bψb − ψ†b′ψb′)

+ (φaφ†a + φa′

φ†a′)(ψbψ
†b − ψb′ψ

†b′)

− 2φaφ†bψaψ
†b + 2φa′

φ†b′ψa′ψ†b′ − 2φ†aφ
bψ†aψb + 2φ†a′φ

b′ψ†a′

ψb′

− iǫabǫc
′d′φ†aψbφ

†
c′ψd′ − iǫbcǫa

′d′φ†a′ψbφ
†
cψd′

+ iǫa
′b′ǫcdφ†a′ψb′φ

†
cψd + iǫb

′c′ǫadφ†aψb′φ
†
c′ψd

+ iǫabǫc′d′φ
aψ†bφc′ψ†d′ + iǫbcǫa′d′φ

a′

ψ†bφcψ†d′

−iǫa′b′ǫcdφ
a′

ψ†b′φcψ†d − iǫb′c′ǫadφ
aψ†b′φc′ψ†d

]

. (2.4)

The non-relativistic ABJM theory is then defined by the combined action

of (2.1), (2.2), (2.3) and (2.4). Notice that the theory does not conserve fermion num-

ber. Therefore, despite being non-relativistic, the theory permits processes in which a pair

of fermions transmutes to a pair of bosons and vice versa.

2.2 Kinematical, dynamical and conformal supersymmetries

We now analyze supersymmetries of the non-relativistic ABJM theory. In general, the

supersymmetry in non-relativistic system is decomposed into the leading component in the

non-relativistic limit, called kinematical supersymmetry, and the remaining component,

called dynamical supersymmetry. The action is invariant under the following N = 6

kinematical supersymmetry transformations:

δφA =
√

2m
(

ξAbψb + iξ̂Ab′ψb′

)

δφ†A =
√

2m
(

−ξ̂Abψ
†b + iξAb′ψ

†b′
)

δψa =
√

2m
(

ξ̂aBφ
B
)

δψa′ =
√

2m
(

−iξa′Bφ
B
)

δψ†a =
√

2m
(

ξaBφ†B

)

δψ†a′

=
√

2m
(

iξ̂a′Bφ†B

)

δA0 = +
√

2m
1

4m

(

φA(ξ̂Abψ
†b + iξAb′ψ

†b′) + (ξaBψa − iξ̂a′Bψa′)φ†B

)

δA0 = −
√

2m
1

4m

(

(ξ̂aBψ
†a + iξa′Bψ

†a′

)φB + φ†A(ξAbψb − iξ̂Ab′ψb′)
)

δAi = 0

δAi = 0 . (2.5)

Here, ξAB denotes 6 complex spinor parameters of the kinematical supersymmetry. It

turns out that only 5 of them are independent. To see this, we first denote them as εi
(i = 1, · · · , 6):

ξAB = (Γ∗i)ABǫi, ξ̂AB = (Γ∗i)ABǫ∗i, ξAB = (Γi)ABǫ
i, ξ̂AB = (Γi)ABǫ

∗i . (2.6)
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the gamma matrices Γi
AB are taken as

Γ1 = σ2 ⊗ I , Γ2 = −iσ2 ⊗ σ3 ,

Γ3 = iσ2 ⊗ σ1 , Γ4 = −σ1 ⊗ σ2 ,

Γ5 = σ3 ⊗ σ2 , Γ6 = −i I ⊗ σ2 . (2.7)

These chiral SO(6) gamma matrices are the intertwiner between the SU(4) antisymmetric

representation (with the reality condition) and the SO(6) (real) vector representation. Note

that 1
2ǫ

ABCDΓi
CD = −(Γi∗)AB . From these, one finds in the large component of m → ∞

that the spinor parameters ε1 and ǫ2 are not mutually independent since ǫ1−iǫ2 component

is sub-leading as m → ∞, so there are only 5 independent kinematical supersymmetry

transformations. We denote the corresponding supercharges as Q0 and Qm (m = 1, · · · , 4).
Under the SU(2)×SU(2) R-symmetry, they transform as (1,1) and (2,2), respectively.

The combination (ǫ1 − iǫ2) of the spinor parameters still yield a residual contribution

to the smaller component. It generates the dynamical supersymmetry transformations:

δφA =
1√
2m

(

−iζ̂AbD+ψb + ζAb′D−ψb′

)

δφ†A =
1√
2m

(

−iζAbD−ψ
†b − ζ̂Ab′D+ψ

†b′
)

δψa =
1√
2m

(

−iζaBD−φ
B
)

δψa′ =
1√
2m

(

−ζ̂a′BD−φ
B
)

δψ†a =
1√
2m

(

iζ̂aBD+φ
†
B

)

δψ†a′

=
1√
2m

(

−ζa′BD−φ
†
B

)

δA0 = +
1√
2m

1

4m

(

φA(−iζAbD−ψ
†b + ζ̂Ab′D+ψ

†b′) + (iζ̂aBD+ψa + ζa′BD−ψa′)φ†B

)

δA+ = +
1√
2m

(

φAζAbψ
†b − iζa′Bψa′φ†B

)

δA− = +
1√
2m

(

ζ̂aBψaφ
†
B + iφAζ̂Ab′ψ

†b′
)

δA0 = − 1√
2m

1

4m

(

(−iζaBD−ψ
†a + ζ̂a′BD+ψ

†a′

)φB + φ†A(iζ̂AbD+ψb + ζAb′D−ψb′)
)

δA+ = − 1√
2m

(

ζaBψ
†aφB − iφ†Aζ

Ab′ψb′

)

δA− = − 1√
2m

(

iζ̂a′Bψ
†a′

φB + φ†Aζ̂
Abψb

)

. (2.8)

the spinor parameter of dynamical supersymmetry is ζAB

ζAB = (Γ∗i)ABǫi, ζ̂AB = (Γ∗i)ABǫ∗i, ζAB = (Γi)ABǫ
i, ζ̂AB = (Γi)ABǫ

∗i . (2.9)

with only i = 1 and i = 2 contributing to the transformations. We denote the dynamical

supercharge as Q. Under the SU(2)×SU(2) R-symmetry, the supercharge Q is a singlet.
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Finally, associated to the two dynamical supersymmetries, there are two conformal

supersymmetries. In fact, they are imperative in order for kinematical and dynamical

supersymmetries form non-relativistic supersymmetry algebra.

2.3 Non-relativistic superconformal algebra

We now summarize the non-relativistic superconformal algebra with fourteen supercharges

realized in the non-relativistic ABJM theory. The bosonic part is nothing but the

Schrödinger algebra — non-relativistic conformal algebra: [18] - [22]:

i[J, P+] = −iP+ , i[J, P−] = +iP− , i[J,G+] = −iG+ , i[J,G−] = +iG− ,

i[H,G+] = +P+ , i[H,G−] = +P− , i[K,P+] = −G+ , i[K,P−] = −G− ,

i[D,P+] = −P+ , i[D,P−] = −P− , i[D,G+] = +G+ , i[D,G−] = +G− ,

i[H,D] = 2H , i[H,K] = D , i[D,K] = 2K , i[P+, G−] = 2M . (2.10)

In our notation, H is the non-relativistic Hamiltonian, P± are the momentum, J is the

U(1) angular momentum, D is the dilatation, K is the special conformal transformation,

and Gz , Gz are the Galilean boost generators. Moreover, M is the total mass generator

M = m

∫

d2x ρ where ρ = Tr(φ†Aφ
A + ψ†AψA) (2.11)

and ρ measures the particle number density of the non-relativistic matter fields. An im-

portant point for later discussions is that ρ is also the matter part to the electric charge of

the overall U(1) subgroup in the U(N)×U(N) gauge group.

The non-vanishing fermionic part of the non-relativistic superconformal algebra is

{Q0, Q
∗
0} = 2M , {Qm, Q

∗
n} = 2Mδmn + i 2mRmn , (2.12)

{Q,Q∗} = H , {Q0,Q∗} = P− , {Q, Q0∗} = P+ ,

{S,S∗} = +K , {S, Q∗
0} = −G+ , {S,Q∗} =

i

2

(

iD − J +
3

2
R

)

,

i[J,Q0] =
i

2
Q0 , i[J,Qm] =

i

2
Qm , i[J,Q] = − i

2
Q ,

i[G−,Q] = −Q0 , i[D,Q] = −Q , i[K,Q] = +S ,

i[H,S∗] = −Q∗, i[P−,S] = −Q0, i[D ,S] = +S , i[J,S] = − i

2
S ,

i[R,Q0] = −iQ0, i[R,Qm] =
i

3
Qm, i[R ,Q] = −iQ , i[R ,S] = −iS.

Here, R and Rmn are R-symmetry generators, while Q and S are the dynamical

supersymmetry and the superconformal generators, both of which are SU(2)×SU(2)

R-symmetry singlets.

We note that the non-relativistic superconformal algebra has a grading structure with

respect to the dilatation operator D and can be triangular-decomposed as

A+ ⊕A0 ⊕A−, (2.13)

– 7 –
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where

A+ = { P−, P+, H, Q, Q∗ }
A0 = { J, R, Rmn, M, D, Q0, Q

∗
0, Qm, Q

∗
m }

A− = { G−, G+, K, S, S∗ }. (2.14)

Related, for later purposes, we notice that the algebra has a non-trivial involution anti-

automorphism of the algebra [23] given by

w(J) = J, w(P±) = G∓, w(G±) = P∓, w(H) = −K,
w(R) = R, w(D) = −D, w(M) = −M, w(K) = −H,
w(Q0) = iQ∗

0, w(Q∗
0) = iQ0, w(Qm) = iQ∗

m, w(Q∗
m) = iQm,

w(Q) = iS∗, w(Q∗) = iS, w(S) = iQ∗, w(S∗) = iQ. (2.15)

This anti-automorphism is much similar to the Belavin-Polyakov-Zamolodchikov (BPZ)

conjugation of the relativistic two-dimensional conformal field theories and plays a central

role in the representation theory of the non-relativistic superconformal algebra.

3 Local observables

3.1 operator-state correspondence

We first recapitulate briefly the operator-state correspondence in the non-relativistic

CFT [24]. Consider a local operator O(x), whose scaling dimension ∆ and mass µ are

given by the actions i[D,O(x)] = −∆O(x) and [M,O(x)] = µO(x), respectively. In the

non-relativistic ABJM theory, local operators must form a representation of the super-

Schrödinger algebra. If O(x) commute with G± and K (as well as S in the superconformal

case), we call it the primary operator :

i[G±, O(x)] = 0, i[K,O(x)] = 0, i{S, O(x)] = 0 . (3.1)

A tower of descendant operators is then obtainable by acting iP± := −∂± and iH := ∂t

repeatedly on a given primary operator. Within each tower, the primary operator has the

lowest scaling dimension. This is in accord with the grading structure with respect to D. In

so far as µ is nonzero, we can always reach the primary operator by acting G± and K on the

descendants of each tower. Therefore, each tower is built upon a single primary operator,

so we focus on the primary operators in analyzing the operator-state correspondence.

The operator-state correspondence in the non-relativistic CFT assigns to each primary

operator an energy eigenstate of the system in a harmonic potential. In other words, we

take the Hamiltonian to be

H = H +K , (3.2)

where the special conformal generator K provides a harmonic potential around the origin.

We see that the state |O〉 = e−HO(x = 0)|0〉 creates the energy eigenstate of H

H|O〉 = e−HdOO(x = 0)|0〉 = dO|O〉 , (3.3)

– 8 –
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where dO is the scaling dimension of the primary operator: i[D,O(x)] = −(2t∂t + x · ∂ +

dO)O(x). Note that the Hilbert space of this harmonic oscillator system has a natural

involution anti-automorphism defined by the usual quantum-mechanical Hermitian conju-

gation of the harmonic oscillator. This anti-automorphism agrees well with the BPZ-like

conjugation defined in section 2.3. Thus it is legitimate to use the unitary representation

of the non-relativistic superconformal algebra based on the BPZ-like conjugation.

The argument here relies on the assumption that the operator O does not annihilate

the vacuum. Were O annihilating the vacuum, we could instead consider O† that would

not annihilate the vacuum and study the corresponding state as long as µ is nonzero.

Later, when we discuss operators with µ = 0, we shall encounter an important subtlety in

extending this operator-state correspondence to the µ = 0 sector.

3.2 zero-norm states and correlation functions

One distinguishing feature of the non-relativistic ABJM theory we would like to show is

that all the gauge invariant local observables (operators) have zero norm. In addition, all

the correlation functions among them are trivial. This observation will eventually suggest a

very peculiar nature of candidate gravity dual theory: the corresponding bulk fields should

have zero norm as well. Nevertheless, we claim that these zero-norm states are non-trivial,

as we will discuss further below.

There are several ways to see why all gauge invariant local operators must have zero

norm in the non-relativistic ABJM theory.4 The crucial observation to this is that the

total mass charge

M = m

∫

d2x ρ where ρ = Tr(φ†Aφ
A + ψ†AψA) (3.4)

measures matter contribution to the electric charge of the diagonal U(1) subgroup of the

U(N)×U(N) gauge group. As a consequence, if O(x) is a gauge invariant local (primary)

operator, it must have zero electric charge and hence zero total mass: i[M,O(x)] = 0.

This implies that, from the commutation relation i[G∓, P±] = 2M and the unitary rep-

resentation of the superconformal algebra under the BPZ-like conjugation w(G+) = P−

(see [23] for the details), which is compatible with the state-operator correspondence in

the non-relativistic conformal field theory [24], || P±|O〉 ||2 = 2µ|| |O〉 ||2 ought to vanish

identically. Therefore, if µ of O(x) is zero, P±|O〉 has zero norm. If we also assume P±

does not annihilate O, |O〉 must be a zero-norm state. Here, we have used the fact that,

by definition, the primary states (created by the primary operators acting on the vacuum)

are annihilated by G±.

In this argument, we assumed that there is a unique Galilean vacuum, and P±|O〉
states (or more precisely the corresponding operators i[P±, O(x)] ) are non-trivial. This

assumption is reasonable since i[P±, O(x)] = ∂±O(x) and the local operator ∂±O(x) is

generically non-zero. In this way, we conclude that the state |O〉 itself must have zero norm.

4We may consider a charge source such as monopole operator to avoid this constraint. The possibility

will be discussed in section 5.
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An alternative way to see this is that any gauge invariant operator O(x) is necessar-

ily constructed out of both creation operators and annihilation operators. For example,

Tr(ψ†AφB) is constructed out of a creation operator ψ†A and an annihilation operator φB .

Recall that the creation operators have positive total mass (positive diagonal U(1) electric

charge) and the annihilation operators have negative total mass (negative diagonal U(1)

electric charge), so we have to combine both fields to construct µ = 0 gauge invariant oper-

ator. However, since the annihilation operator acting on the Galilean vacuum annihilates

it (i.e. φB |0〉 = 0), the vacuum is annihilated by such ‘massless’ gauge-invariant operators

(i.e. Tr(ψ†AφB)|0〉 = 0). This asserts that the corresponding states are zero-norm states.

In addition, we can show all the correlation functions among gauge invariant local

operators are trivial. We will study the correlation functions such as

〈O1(x1)O2(x2) · · ·On(xn)〉 . (3.5)

As we have seen, they are all zero-norm states: 〈Oa(x)Ob(0)〉 = 0. The key point to show

the triviality of (3.5) is that, in the non-relativistic system, all the propagators of elemen-

tary fields in the perturbation theory are retarded ones. It is then easy to convince ourselves

that, in perturbative evaluation of (3.5), we have to encounter backward propagators in

time at least once, and such amplitudes vanish identically.5 We would like to emphasize

that the argument here does not rely on any supersymmetry: non-supersymmetric op-

erators are not protected against radiative corrections in general, but still they remain

zero-norm states. Possible renormalization of operators cannot possibly change the total

mass charge.

3.3 Zero-norm states in gravity dual

While there is yet no known gravity dual theory proposed for the non-relativistic ABJM

theory, we could understand some qualitative nature of these zero-norm states in the phe-

nomenological non-relativistic gravity dual proposed in [1, 2]. The metric of gravity dual

is given by

ds2 = −2(du)2

z4
+

−2dudv + dx2 + dz2

z2
, (3.6)

where the v-direction is compactified with radius R. The n-th Kaluza-Klein states have

mass µ = n/R. We shall take the limit R → 0. In this limit, the only allowed state is the

n = 0 zero-mode. This fits to our assertion that there is no gauge invariant local operator

with nonzero µ in the non-relativistic ABJM theory.6

Following [1], let us study a minimally coupled scalar field in the background

S = −
∫

d5x
√−g(gµν∂µφ

∗∂νφ+m2
0φ

∗φ) . (3.7)

5We can draw the same reasoning in the Euclidean path integral by the contour rotation argument.

Physically, this corresponds to the statement that in the non-relativistic theory propagator consists only of

retarded part and there is no particle anti-particle pair processes.
6When we consider monopole operators later, we shall see that the choice 1/R = k and µ = nk yields

the correct spectrum.
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As said above, we are interested in the zero-norm sates, and take the Kaluza-Klein mode

with Pu = µ = 0. The action is reduced to

S =

∫

d4xdz
1

z5
(z2φ∗∂2

x
φ−m2

0φ
∗φ) . (3.8)

Notice that there is no term with time derivative left.

The equation of motion is readily solved by Fourier transform as φ±(z,k, ω) =

z2K±ν(|k|z) by the modified Bessel function with ν =
√

m2
0 + 4. By studying the asymp-

totics of φ+ and by using the GKPW prescription, we obtain the two-point correlation

function of the operator O(x) dual to φ in momentum space as

〈O(k, ω)O(−k,−ω)〉 ∼ (|k|2)2ν . (3.9)

Note that there is no dependence on the energy ω. Due to this absence of ω-dependence

in the two-point function, going back to the coordinate-space gives δ(t) in the coordinate

space. This is a manifestation of the fact that these are zero-norm states.

This elementary computation can be generalized to higher-point correlation functions.

Since (3.8) does not have any time derivative, the dynamics is frozen. As a result, any

correlation functions among the local operators with Pu = µ = 0 computed in the GKPW

prescription contain string of delta-functions of t. This implies that the correlation func-

tions are topological at best, as expected from the discussions based on Schrödinger algebra.

It should be remarked that the states with Pu = µ = 0 is actually quite subtle in the

framework of the discrete light-cone quantization. A prescription is that they are defined as

the limit Pu = µ→ 0, but then these states are lifted into ultraviolet infinitum of the light-

cone Hamiltonian. Normally, they decouple from finite energy excitations but there are also

known situations that such ultraviolet decoupling does not work. For example, suppose

the theory under consideration has an anomalous global symmetry when coupled to gauge

theory or gravity. Then, the global charge violation can be seen via pair production in the

background of appropriate gauge or gravitational field background. In the conventional

discrete light-cone quantization, where pair production / annihilation is not allowed, such

a process seems not possible at all. It turns out that the states with Pu = µ → 0 are

entirely responsible for reproducing the correct global charge anomaly. For details, we

refer to [25].

3.4 Supersymmetry protected operators

In our considerations in this section so far, the supersymmetry did not play any role.

We now classify local observables further in terms of the non-relativistic superconformal

algebra. In particular, we are interested in local operators protected by the supersymmetry

as well as the non-relativistic conformal symmetry. Unitary representations of the non-

relativistic superconformal algebra (under the BPZ conjugation) was studied in [23], where

the unitarity bound as well as the null vector conditions were also presented under the

assumption µ 6= 0 in the representation theory. We shall utilize the results of [23], exercising

a little care because we are primarily focusing on ‘massless’, zero norm states.
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Letters U(N)×U(N) J R d R− 2J

φa (N,N) 0 2/3 1 2/3

φ†a′ (N,N) 0 2/3 1 2/3

ψ†a (N,N) −1/2 1/3 1 4/3

ψa′ (N,N) −1/2 1/3 1 4/3

P+ 0 −1 0 1 2

Table 1. List of the letters contributing to the index (hence ∆ = 0) for the non-relativistic ABJM

theory. a, a′ = 1, 2 are indices for SU(2)× SU(2) R-symmetry.

For instance, the mass or U(1) charge density ρ in (3.4) is naturally protected. It also

contains a null descendant at level-2 due to the conservation law ∂tρ + ∂±j
∓ = 0, where

j± is the momentum or U(1) current density. Such classes of null conditions were not

considered explicitly in [23] as they are specific to the zero-norm operators.7

The supersymmetry protected operators, on the other hand, are not affected by the

condition of µ = 0. We can therefore use the classification studied in [23] (see also [16]).

In the weak coupling limit (k → ∞), we can construct these chiral primary operators out

of chiral single ‘letters’ as shown in table 1. In particular, the chiral primary operators

satisfy the condition

∆ = d0 + j0 −
3

2
r0 = 0 . (3.10)

The chiral primary states satisfying this condition is annihilated by Q∗. There are also

anti-chiral primary operators out of conjugates of the single letters shown in table 1. They

satisfy the condition

∆ = d0 − j0 +
3

2
r0 = 0 . (3.11)

We can then form gauge-invariant (anti)chiral primary operators from multiple prod-

uct of these letters and contracting their gauge indices so that a gauge singlet is

formed. They are further decomposed to irreducible symmetric representations of the

SU(2)×SU(2) R-symmetry.

For example, we have the single-trace operators

Oa1···aL

a′
1
···a′

L

:= Tr
[

φ(a1φ†(a′
1

φa2φ†
a′
2

· · · φaL)φ†
a′

L
)

]

(L = 1, 2, 3, · · · ) (3.12)

of conformal dimension 2L. They are classified by the symmetric spin-L representation of

SU(2)×SU(2).

It is interesting to compare the supersymmetry protected operators in the non-

relativistic ABJM theory with the supersymmetry protected operators in the parent rela-

tivistic ABJM theory. First, the flat directions of the non-relativistic ABJM theory does

7Actually by carefully taking µ→ 0 limit of the representation theory studied in [23] , we can show that

the null condition fixes the conformal dimension of ρ to be 2 and protected. It indicates that representation

theory studied previously needs a careful treatment for this limit. However, in this paper, we will not

discuss details of a systematic representation theory for µ = 0.
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not descend from the flat directions of the relativistic ABJM theory. For the latter, we

need to turn off the mass deformation, else the chiral ring structure is trivial and no

nontrivial protected operators can be formed. Equivalently, the mass deformation in the

relativistic ABJM theory lifts up the Coulomb branch completely. However, once taking

the non-relativistic limit of the mass deformed relativistic ABJM theory, we see from the

scalar potential (2.3) of the non-relativistic ABJM theory that there are flat directions.

Therefore, the flat directions in these two theories are separated by mass deformation and

non-relativistic limit and hence are a priori unrelated. Second, the R-symmetries of the

two theories are different. In the relativistic ABJM theory, we have SU(4) R-symmetries,

so the chiral operators can be classified by the symmetric representations of SU(4). Here,

we only have SU(2)×SU(2) symmetry. In particular φa and φa′

should be treated quite

differently: the former is a chiral letter but the latter is not (it is an anti-chiral letter).

It may be that not all the gauge invariant combinations of the letters in table 1 are chiral

primary operators for finite k. As in the relativistic counterpart, the scalar potential (2.3)

in the action may impose nontrivial descendant equations as equations of motion. In

non-relativistic supersymmetry, it is unclear how to formulate these descendant equations.

However, in the computation of the superconformal index, the Bose-Fermi cancelation and

the resultant invariance of the index guaranteed that the index does not change in the ’t

Hooft limit. Therefore, we were able to use the k → ∞ result without having to solve the

constraint from the potential terms.

4 Non-local observables and correlation functions

So far, we considered local operators and their correlation functions. There are also various

gauge-invariant nonlocal operators. Among them, we shall now consider the Wilson loop

operator and study their correlation functions.

4.1 Wilson loops

With gauge fields present in the non-relativistic ABJM theory, nonlocal observables can

be constructed. In this work, we shall focus on Wilson loops and ‘t Hooft loops. In

gauge theories, these loop operators played an important role: they are order parameter

for distinguishing the confinement and the Higgs phases. Often, they are also important

mathematically. For example, in the pure Chern-Simons theory where there is no dynamical

degrees of freedom, the Wilson loops and the ‘t Hooft loops — they are the same — define

knot and link topological invariants. Such topological nature ceases to be the case once

relativistic matter is coupled to the Chern-Simons gauge field. The relativistic ABJM

theory falls into this class. What about the case of coupling non-relativistic matter such as

the non-relativistic ABJM theory? We claim that this case is exceptional in so far as these

loop operators are concerned. In this section, we will show that the Wilson / ‘t Hooft loops

in the non-relativistic ABJM theory are still topological even though it contains nontrivial

dynamical degrees of freedom.

By adapting the strategy for constructing those in the relativistic ABJM theory [26]

(see also [27]), we can construct the Wilson loops in the non-relativistic ABJM theory.
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Again, as there are two gauge fields Am, Am associated with the two U(N) gauge groups,

two independent Wilson loops are present:

W [C] :=
1

N
TrP exp

[

i

∫

C

dτ(ẋ mAm +M B
A φAφ†B +N B

A ψBψ
†A)

]

W [C] :=
1

N
TrP exp

[

i

∫

C

dτ(ẋ mAm +M A
B φ†Aφ

B −N B
A ψ†AψB)

]

. (4.1)

Here, M B
A and N B

A are so-called velocity matrices of the contour C. Because the non-

relativistic limit c → ∞, they are non-zero only for time-like contour, x± = constant.

Otherwise, M B
A and N B

A are no longer dimensionless parameters.8

As in the relativistic counterpart, W and W of the non-relativistic ABJM theory

are related by the generalized parity transformation, which not only reverses the spatial

orientation but also exchanges the two U(N) gauge groups as well as two SU(2) R-symmetry

groups. In the following, we thus focus on W [C]. As again in the relativistic counterpart,

we readily see that one linear combination of (4.1) is dual to Type IIA fundamental string.

We refer to [26] for details of how these two possible classes of Wilson loops are compatible

with the AdS/CFT correspondence

We now claim that the correlation functions among the Wilson loops (4.1) are topo-

logical in that they depend only on knot and link topologies. In fact, they are identical to

the correlation functions in the pure Chern-Simons theory, where no propagating degrees

of freedom is present. The argument is simple and does not rely on supersymmetry or

conformal symmetry. First, consider the loops with M B
A = N B

A = 0 but with arbitrary

contour C. As we have stressed, there is no particle-antiparticle pair production and anni-

hilation processes in non-relativistic system. As such, no Feynman diagram with internal

matter loops contributes to the Wilson loop correlation functions. Thus, the only Feynman

diagram contributing to the Wilson loop amplitudes come entirely from the same set of

diagram contributing to the pure Chern-Simons theory. The correlation functions must

agree to all orders in perturbation theory.

When we choose the contour C timelike (x± = constant), we are able to introduce

constant matrices M B
A and N B

A as well. As we will see, such choices are important

for obtaining supersymmetric Wilson lines. In the Wilson loop expectation value, these

constant matrix allow additional scalar (or fermion) exchanges. However, again there is

no contribution to the correlation functions because the insertion M B
A φAφ†B +N B

A ψBψ
†B

has a net zero particle number, so one of the retarded propagators to close a loop makes

the amplitudes vanish.

The reason why exchange of the non-relativistic ABJM matter fields does not con-

tribute to the static potential can be easily understood from the relativistic ABJM theory

and non-relativistic reduction thereafter. To take the non-relativistic limit, we effectively

introduce infinite mass to the matter fields, keep particle components of them while sup-

pressing anti-particle components. Then, the causal exchanges of massive matters would

not contribute to the force between the static sources. Similarly, there is no internal mat-

8Recall that D(φA) = D(ψA) = 1, D(t) = −2 and D(x) = −1 in the non-relativistic system.
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ter loop in the amplitudes because either they are too heavy or there is no virtual pair

processes available and the amplitudes are suppressed.

4.2 Implications to gravity dual

From the Wilson loop in the non-relativistic ABJM theory, we can also learn features and

characteristic of putative gravity dual to the non-relativistic ABJM theory. Consider a

unknot Wilson loop whose contour is a rectangle of width L and T . It is well known that

the Wilson loop expectation value is independent of the size and the shape of the contour.

In the limit T → ∞, this Wilson loop measures static potential between a pair of quark and

anti-quark separated by a distance R. On general ground, by the non-relativistic conformal

symmetry (Schrödinger symmetry), one expects that the potential scales as

V (R) = −C(λ)

R2
. (4.2)

On the other hand, it is well-known that unknot Wilson loop expectation value is indepen-

dent of shape and hence on T,R. Therefore, C(λ) = 0 and the static potential is absent in

the non-relativistic ABJM theory. We do not yet know what the gravity dual to the non-

relativistic ABJM theory is. Nevertheless, we can still argue for peculiarity of the putative

dual theory. Recall that, from the viewpoint of Wilson loop - string duality, the static

potential (4.2) between two charges is directly related to the interaction energy between

two strings emanating from the boundary. The interaction is mediated by the graviton, the

dilaton and the Neveu-Schwarz-Neveu-Schwarz 2-form potential. As the two strings are

antiparallel, the force mediated by each of these fields is attractive. Therefore, absence of

the static potential in the gauge theory side implies that each of the three forces are zero!

Notice that the forces under consideration are all instantaneous, thus are not necessarily

subject to the zero-norm conditions.

Evidently, the above result suggests that the fundamental string in gravity dual is

tensionless. This is because, as in the relativistic counterpart, the string tension ought to

set a universal ’charge’ for the Newtonian gravity, the dilaton and the 2-form forces. In

section 6, we shall find another indication from the study of the dilatation operator in the

non-relativistic ABJM theory and the spin chain picture that a string in the gravity dual

background is tensionless.

Summing up, from considerations of quantum aspects, we see that putative gravity dual

to the non-relativistic ABJM theory must be very different from the traditional AdS/CFT

correspondence of the relativistic counterpart.

4.3 Supersymmetric Wilson lines

Much like the local observables, it is important to understand under what conditions the

Wilson loops in the non-relativistic ABJM theory are supersymmetric. To this end, we start

with the time-like Wilson loop operators in the defining representation with the ansatz:

W [C] =
1

N
TrP exp

[

i

∫

dτ(ẋ mAm +M B
A φAφ†B +N B

A ψBψ
†A)

]

. (4.3)
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where the velocity matrices M B
A and N B

A are assumed constant. We now analyze con-

ditions the above Wilson loop preserves part of the kinematical, dynamical and confor-

mal supersymmetries.

Consider first the kinematical supersymmetry. The variation of the Wilson loop under

the kinematical supersymmetry gives the following conditions on the spinor parameters ξ, ξ̂:

1

4m
ξ̂Ab −M B

A ξ̂Bb +N c
b ξ̂cA − iN c′

b ξc′A = 0

1

4m
ξAb′ +M B

A ξBb′ − iN b
b′ ξ̂bA −N c′

b′ ξc′A = 0

1

4m
ξaB +M B

A ξAa −N a
c ξcB − iN a

c′ ξ̂
c′B = 0

1

4m
ξ̂a′B −M B

A ξ̂Aa′ − iN a′

c ξcB +N a′

c′ ξ̂
c′B = 0 . (4.4)

We decompose the velocity tensors into su(2)⊕su(2) parts, and parametrize the matrix as

M b
a = αδb

a and M b′

a′ = −αδb′

a′ as well as N b
a = βδb

a and N b′

a′ = −βδb′

a′ . To preserve the

component Q0, they have to satisfy

1

4m
− α− β = 0 . (4.5)

Similarly, to preserve the components Qm, they have to satisfy

1

4m
+ α− β = 0 . (4.6)

In the former case, one can preserve two real kinematical supercharges, while in the latter

case one, can preserve eight real kinematical supercharges. For the special case with α = 0

and β = 1
4m

, one can preserve all the ten real kinematical supercharges.

Consider next the dynamical supersymmetry Q. It is straightforward to see that one

needs to set N B
A = 0 to preserve the dynamical supersymmetry. The supersymmetry

conditions now read

1

4m
ζAb = −M B

A ζBb

1

4m
ζ̂Ab′ = +M B

A ζ̂Bb′

1

4m
ζ̂aB = +M B

A ζ̂Aa

1

4m
ζa′B = −M B

A ζ̂Ab′ . (4.7)

We find that Q supersymmetry is preserved provided we choose M b
a = δb

a and M b′

a′ = −δb′

a′ .

In summary, by choosing M b
a = − 1

4m
δb
a and M b′

a′ = + 1
4m
δb′

a′ , we can preserve eight

kinematical supersymmetries Qm as well as two dynamical supersymmetries Q. For these

choices, one easily checks that the conformal supersymmetry S is always broken.

We can investigate other supersymmetric Wilson loops which are not necessarily time-

like. For example, it is obvious that the spacelike Wilson lines:

W [C] =
1

N
TrP exp

(

i

∫

dτ ẋ±A±

)

(4.8)
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preserve all the ten kinematical supersymmetry simply because A± are invariant under the

kinematical supersymmetry transformations. However, it is not possible to construct the

Wilson lines that preserve the dynamical supersymmetry at the same time.

Finally, we consider the case with ẋm = 0. The contour C is a point in spacetime and

gives rise to Wilson loop ’instanton’ with

W [C] =
1

N
TrP exp

(

i

∫

dτ M B
A φAφ†B

)

. (4.9)

These Wilson loops are actually a local operator in (2+1) dimensions. There are several

possibilities. For example, one can choose M B
A = δB

1 δ
1
A preserves four kinematical super-

symmetries (combination of ǫ3 + iǫ4 and ǫ5 − iǫ6), or choose M B
A = δB

1 δ
1′
A preserves two

kinematical supersymmetries (combination of ǫ3 + iǫ4). In addition, one can preserve holo-

morphic or anti-holomorphic half of the dynamical supersymmetry Q by choosing B = b

and A = a′ or vice versa. We see that they generate the chiral (or anti-chiral) primary op-

erators annihilated by Q∗ or Q, respectively. More generally, supersymmetric Wilson lines

are generating functions of chiral primary operators. This is quite similar to the situation

in the relativistic ABJM theory [26].

5 Nontrivial observables and correlation functions

This result of the previous sections is curious from the viewpoint of the non-relativistic

AdS/CFT correspondence. Local observables in CFT are in one-to-one correspondence

with bulk fields in bulk spacetime, and the correlation functions in CFT are computable

from the amplitudes of bulk fields by adapting the GKPW prescription (see [1, 2, 8]). What

we showed so far is that all the bulk fields have zero norm and that fundamental string

have topological interactions only. Does this mean that the non-relativistic ABJM theory

itself is trivial or topological with little or no dynamical contents?

We claim, nevertheless, that the gauge invariant observables in the non-relativistic

ABJM theory are nontrivial, and so should be the dual gravitational theory as well. After

all, many of the zero-norm states are familiar quantities such as energy momentum tensor

or conserved currents. While they create zero-norm states at the best, they are by no

means trivial operators. Otherwise, we cannot construct charges of the non-relativistic

conformal group from the outset. For example, the total density ρ in (3.4) has zero-norm,

but certainly the mass operator M is a nontrivial operator (and so should be ρ).9

Below, we illustrate that, along with Wilson loop operators, two classes of operators

give rise to physically nontrivial correlations, evading the null property of operators with

µ = 0 we have shown in the previous section.

5.1 Monopole operators

Recalling that crux of the argument for the null property of all conformal primary local

operators lies in the observation that the particle number is nothing but the charge of

9Related to this, in [23], we have given a hypothetical finite norm to these “massless states” to be counted

in the index. Otherwise the index becomes trivial as well. They form a part of the protected operators, so

this prescription makes sense physically.
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the diagonal U(1) gauge group. As such, gauge invariant local operators contain both

creation and annihilation operators of matter fields and annihilate the Galilean vacuum.

Can there be any operator which can source the U(1) charges so that gauge invariant

operators involving only creation operators can be constructed? It is indeed possible in the

non-relativistic ABJM theory because the theory facilitates monopole operators and the

Chern-Simons term.

Using the gauge fields in the non-relativistic ABJM theory, one can construct flux-

changing, monopole operators. In fact, since the non-relativistic limit does not affect the

gauge fields (except appropriate scaling of the gauge potentials), the monopole opera-

tors are the same for both non-relativistic and relativistic ABJM theory. In short, the

monopole operator is a local operator in (2 + 1) dimensions, defined as a specification of

boundary condition for gauge fields: throughout S
2 around the location of the operator,

a quantized U(N) gauge flux emanates. We specify the gauge flux in term of the singu-

lar magnetic monopoles [28]. Canonically, they are labeled by magnetic charges of the

Cartan subalgebra:

Fmn = Qǫmnp
xp

4π|x|3 where Q = diag(q1, · · · , qN ) . (5.1)

Any generic magnetic monopole configuration can be brought to this form by U(N) con-

jugation. The monopole charge Q, written in terms of Cartan generators, should obey the

Dirac-Schwinger-Zwanziger quantization condition:

exp(2πiQ) = I → qa ∈ Z. (5.2)

In the non-relativistic ABJM theory, the Chern-Simons term lets these monopole operators

also charged and transform in irreducible representations of the gauge group. The monopole

with flux qa, (a = 1, · · · , N) transforms in the representation of U(N) with the highest

weight given by (kq1, kq2, · · · , kqN ), where we ordered the U(1) charges as q1 ≥ q2 ≥ · · · ≥
qN . The representation is labeled by Young tableaux whose a-th low has kqa many boxes.

Since there are two U(N) gauge groups, we have two sets of monopole operators as the basic

building block. In particular, they carry respective U(1) charges k
∑

a q
a. We shall denote

the corresponding monopole operators asW (kq1, · · · , kqN ), W (kq1, · · · , kqN ), respectively.

We see that they are local operators of nonzero mass µ > 0. For the relativistic ABJM

theory, it was shown that these monopole operators are crucial to find precise agreement

of the index between the conformal field theory side and the gravity dual side at non-

perturbative level [29].

We can construct local operators utilizing the above monopole operators [12]. Re-

call that in the non-relativistic ABJM theory Chern-Simons term yields the Gauss law

constraints for the U(N)×U(N) gauge fields:

F12 −
2π

k

(

φAφ†A − ψAψ
†A
)

= 0 , F 12 −
2π

k

(

φ†Aφ
A + ψ†AψA

)

= 0 . (5.3)

Therefore, an operator of non-zero U(1) particle number can be made neutral by attaching

a monopole operator of an appropriate representation. In the simplest case of U(1)×U(1)
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gauge group, the monopole operator is given by ekσ, where σ is the pseudoscalar field

dual to the Chern-Simons gauge field that couples to the total mass M . Because of the

shift symmetry of σ → σ + Λ under the gauge transformation, one can construct a gauge

invariant operator by attaching the monopole operator to an otherwise gauge non-invariant

operator with non-zero M . More generally, for nonabelian U(N)×U(N) gauge group, it is

possible to construct a gauge invariant composite operator by attaching the above GNO

monopole operator to a product of nonabelian matter fields having non-zero mass M . For

example, the so-called dibaryon operator

BL := φ(a1φa2 · · ·φakL)W (L, 0, · · · , 0, 0)W (L, 0, · · · , 0, 0) (L = 1, 2, · · · ) (5.4)

and its hermitian conjugate

B†
L := φ†(a1

φ†a2
· · ·φ†

akL)W (L,L, · · · , L, 0)W (L,L, · · · , L, 0) (L = 1, 2, · · · ) (5.5)

are gauge invariant local operators carrying non-zero mass µ = Lk and scaling dimension

∆ = 2Lk, where L = 1, 2, · · · . There are also dibaryon operators in which string of

(φbφ†b′)
ℓ, (ℓ = 1, 2, · · · ) are inserted in front of various φ’s in the operator. They form a

continuum of the spectrum µ = Lk and ∆ = 2Lk+2ℓ ≥ 2Lk. The highest weight states are

supersymmetry protected and, for these states, the monopole operator does not contribute

to scaling dimension.

Notice that in all the dibaryon operators the mass is different from the U(1) gauge

charge: the U(1) charge of the matter-monopole composite operator is zero because con-

tribution of the monopole operator have U(1) charge opposite to the matter fields. In

fact, this is the distinguishing feature of local operators made out of monopole operators.

The Gauss’ law constraints are U(1) charge neutrality conditions for the sum of matter

contribution and monopole contribution (induced by the Chern-Simons term). Therefore,

they provide a class of operators that are gauge invariant yet have nonzero µ and non-

vanishing norm. Below, because of this, we shall see that correlation functions involving

these operators are physically nontrivial.

5.2 Bi-local and multi-local operators

The second class of operators that can yield physically nontrivial correlations is the bi-

local operators. They are defined by gauge invariant combinations words at two widely

separated space-time locations and open holonomy lines connecting between them:

WA
A′(x, y) := Tr

[

P exp

(

i

∫ y

x

dxmAm

)

φA(x)P exp

(

i

∫ x

y

dxmAm

)

φ†A′(y)

]

, (5.6)

where φ, φ† may be replaced by ψ,ψ†. Here, for simplicity, we have omitted possible scalar

(fermion) part in the Wilson lines by setting M B
A = N B

A = 0. More generally, we can
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introduce the multi-local operators of the form

W
A1···A2n−1

A′
2
···A′

2n

(x1, · · · , x2n) (5.7)

:= Tr

[

P exp

(

i

∫ x2n

x1

dxmAm

)

φA1(x1) P exp

(

i

∫ x2

x1

dxmAm

)

φ†
A′

2

(x2) · · ·

· · · φA2n−1(x2n−1)P exp

(

i

∫ x2n

x2n−1

dxmAm

)

φ†
A′

2n

(x2n)

]

,

where again φ, φ† may be replaced by ψ,ψ†.

Nonlocal operators analogous to (5.6), (5.7) can be constructed from the Wilson loop

operators by first promoting the velocity tensors MB
A , N

B
A to contour-dependent function,

taking functional derivative of the Wilson loop with respect to these velocity tensors, and

finally setting MB
A , N

B
A to zero. It yields a class operators where a pair of words φφ† or

ψψ† is distributed around the Wilson loop contour C.

The operators (5.6), (5.7) are, however, more general than the Wilson loop operators in

that the two primary words φ, φ† are distributed around a (not necessarily simple) contour,

connected by the open holonomy lines in gauge invariant manner. This marks a significant

departure from the Wilson loop operator since the pair of words φφ† or ψψ† have vanishing

U(1) charge and hence µ = 0, while the word φ and φ† or ψ and ψ† have non-vanishing

U(1) charge and hence µ 6= 0 locally. As for the dibaryon operators, we shall see that these

multi-local operators yield physically nontrivial operators.

5.3 Mixed correlation functions

We note that the distinguishing feature of the dibaryon and the multi-local operators is

that they have non-vanishing particle number and hence µ 6= 0 locally. We now argue that

this is sufficient to lead to physically nontrivial correlation functions.

Consider, for instance, the dibaryon operator BL and its hermitian conjugate, B†
L at

two locations in spacetime. In the planar approximation, the two-point correlation function

is given by

〈

BL(t1,x1)B†
L′(t2,x2)

〉

∼ δL,L′ θ(t1−t2) (G(t1−t2, |x1−x2))
2Lk∆(t1−t2,x1−x2)

L , (5.8)

where

G(t,x) =
1

t
exp(−im|x|2/2t) (5.9)

is the Schrödinger propagator and ∆(t,x) is propagator of the monopole operator of defin-

ing representation in (2+1)-dimensional spacetime. Notice that, in the weak coupling limit

k → ∞, both the mass µ = Lk and the scaling dimension ∆ = 2Lk have a large gap of

order O(k) from the local operators of mass µ = 0 and the scaling dimension ∆ = O(1).

We see that the correlation decays very fast with spatial separation of the two dibaryon

operators. We interpret this as the semiclassical counterpart of the light-cone squeezed

along forward time direction (because c→ ∞) in non-relativistic system.
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It is easy to find similar behavior for correlation functions involving the multi-local

operators. For example, consider two-point correlation between the bi-local operators (5.6).

By gauge fixing Aµ = 0 along the contour defining one of the two operators, we have

〈

WA
A′(t1,x1, t̃1,y1) W

B
B′(t2,x2, t̃2,y2)

〉

∼ δA
B′δB

A′ θ(t̃2 − t1)θ(t̃1 − t2) G(t̃2 − t1, |y2 − x1|)G(t̃1 − t2, |y1 − x2|). (5.10)

Extending to multi-local operators, we see that the correlation is given by Wick theorem

for various pairs of φ, φ† subject to the causal boundary condition of the Schrodinger

propagators.

If the bi-local operator W (x, y) is expanded in powers of the separation (x − y), it is

given in an infinite series of spin-s, twist-2 local operators O(s)(x). From the consideration

of section 3, we see that they are null operators with µ = 0 and their correlation func-

tions must all vanish. The fact that the correlation function (5.10) is in general nonzero

suggests that the operator product expansion and the infinite resummation of O(s) in

spin s do not commute. This marks another distinction of non-relativistic system from

relativistic counterpart.

There are further non-vanishing correlation functions. One may insert arbitrary num-

bers of local operators with µ = 0 or arbitrary numbers of Wilson loop operators to the

correlation functions (5.8), (5.10). Evidently, they are physically nontrivial. The pattern

that emerges out of all these correlation functions is this: to have physically nontrivial

correlation functions, one needs to insert some operators with nonzero µ. The reason why

the null property of section 3 is evaded in this case is that U(1) charge of an operator is

given by a sum of matter contribution ρ and flux contribution as shown in (5.3) while mass

of an operator is given by µ = mρ. Obviously, if the gauge flux of the operator under

consideration is nonzero, the two quantum numbers are different and the null condition no

longer follows.

Physically speaking, while there is no vacuum polarization in the non-relativistic ABJM

theory, there are non-trivial scattering amplitudes. The insertion of the dibaryon or the

multi-local operators is a gauge invariant way to introduce isolated charged particles. Sim-

ilarly, the insertion of the Wilson loop is a gauge invariant way to introduce external

charged probe.

6 Quantum aspects

Quantum dynamics of the non-relativistic ABJM theory entails also many interesting ques-

tions. In this section, we mention briefly two specific aspects and relegate further investi-

gation and other issues to separate papers [30].

6.1 Remarks on Chern-Simons level shift

The non-relativistic ABJM theory is conformally invariant, so there is no infinite renor-

malization to the Chern-Simons coefficient k, whose inverse plays the role of perturbative
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expansion parameter. However, there can in principle be a finite renormalization. In pure

Chern-Simons theory, Witten [31] claimed that the Chern-Simons coupling k is shifted by

k → k +
1

2
C2(G)sign(k), (6.1)

where C2(G) is the Dynkin index (quadratic Casimir operator) for the adjoint representa-

tion of the gauge group G. For U(N), we have C2(G) = N . It is now known that the finite

renormalization depends on regularization scheme. In so-called Yang-Mills scheme, the

scheme in which Yang-Mills term is included to the pure Chern-Simons theory rendering

the gauge fields topologically massive, the shift is nonzero: one-loop vacuum polarization

diagrams of the gauge and the Faddeev-Popov ghost fields contribute additively. This is

the regularization scheme implicit to Witten’s claim. In dimensional reduction scheme, the

scheme in which loop diagrams are first reduced to integrals involving Lorentz scalars only

and then dimensionally continued, the shift is zero: one-loop vacuum polarization diagrams

of the gauge and the Faddeev-Popov ghost fields cancel each other.

In the relativistic ABJM theory, which has N = 6 supersymmetry, the finite renor-

malization is absent for both types of regularization schemes but for different reasons. In

the Yang-Mills scheme, contribution of superpartners of the gauge field is also nonzero

and, when summed together, cancels off the contribution of gauge and ghost fields. In

the dimensional reduction scheme, contribution of superpartners cancels off by themselves.

In fact, it is the N = 2 supersymmetry that is sufficient to ensure cancelation of the

finite renormalization.

Now, in the non-relativistic ABJM theory, all the matter fields including the N = 2 su-

perpartner of the gauge field becomes non-relativistic. Being so, they cannot contribute to

the vacuum polarization of the gauge field. Suppose one adopts the Yang-Mills regulariza-

tion scheme. Then, absence of the vacuum polarization implies that the theory now receives

a finite renormalization of the Chern-Simons coefficient, as in the pure Chern-Simons the-

ory. Since k is also present in front of matter part of the Lagrangian, by supersymmetry,

this then implies that all non-relativistic matter fields receive finite renormalization of the

wave functions by
√

(k +N)/k. To be consistent with gauge invariance, there ought to be

no higher loop corrections beyond one loop. Suppose one instead adopts the dimensional

reduction scheme. Then, since there was no finite renormalization of pure Chern-Simons

theory and since the vacuum polarization is zero for each and every non-relativistic matter

fields, there is no shift of the Chern-Simons coefficient. We thus find a peculiar situa-

tion that a regularization scheme needs to be chosen in order to define the non-relativistic

ABJM theory at quantum level.

We do not have a satisfactory resolution to this issue, but have a tentative preference

to the Yang-Mills scheme. Our reasoning stems from the following physical standpoint.

The conformal fixed point of the ABJM theory (both relativistic and non-relativistic) is

defined as an infrared fixed point of renormalization group flow. The Lagrangian of the

nonconformal theory along the renormalization group flow contains the Yang-Mills term

with nonvanishing coefficient off the fixed point. We should emphasize again that the
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limit of approaching the infrared fixed point is smooth in the relativistic ABJM theory but

discontinuous in the non-relativistic counterpart.

Under the above caveat on using the Yang-Mills scheme, the finite renormalization

k → (k+N) bears an interesting implication in search for gravity dual to the non-relativistic

ABJM theory. In the relativistic ABJM theory, such a finite renormalization was absent,

and the ‘t Hooft coupling λ :=
√

N/k can take an arbitrarily large value, rendering geom-

etry of the gravity dual macroscopically large in string unit and so weakly curved. In the

non-relativistic ABJM theory, we see that this is not possible. The ‘t Hooft coupling is now

given by λ :=
√

N/(N + k), and can take O(1) at most. Therefore, geometry of the gravity

dual ought to have string scale size and becomes strongly curved. We see that, along with

topological nature of interactions, the gravity dual features string-scale geometry.

6.2 Non-relativistic spin chain and dual string theory

Analogous to the relativistic counterpart [32–35], we can also study conformal dimensions

of gauge invariant, single trace operators. We choose the ground state to a supersymmetry

protected operator, for example,

|2L〉 ↔ Tr
[

φ1φ†1′φ
1φ†1′ · · ·φ1φ†1′

]

. (6.2)

Excited states above this ground state with higher conformal dimension are constructible

simply by replacing φ1 to φ2 and φ†1′ to φ†2′ . We have essentially two SU(2) spin chains

alternatingly interweaved. As in the relativistic ABJM theory, these states correspond

to magnon excitations in the alternating spin chain. We would like to find dilatation

operator and its eigenvalues on these states at weak ‘t Hooft coupling limit. We expect

these operators are in one-to-one correspondence with excited states of a single Type IIA

string in yet-to-be-found gravity dual background.

At large N , only planar diagrams contribute. By inspection of the scalar poten-

tial (2.3), it is evident that interactions among the matter fields do not contribute at

all, simply because all planar diagrams involve pair creation/annihilation processes and

they are prohibited in a non-relativistic system as this theory is. Interactions involving

gauge fields are possible but they do not flip the SU(2) flavor ’spins’ and only contribute

to the ground-state energy. When summed up, these contribution ought to vanish since

the dynamical supersymmetry protects the ground-state from acquiring nonzero energy.

This means that all single trace operators, supersymmetry protected or not, have vanish-

ing anomalous dimension to all order in perturbation theory. We conclude that planar

contribution to the dilatation operator is simply an identity operator to all orders in the

‘t Hooft coupling:

Hplanar =

2L
∑

a=1

I + · · · (6.3)

and counts classical scaling dimension for all single-trace gauge invariant states. Here,

the ellipses are subleading contributions in the planar limit. At order O(1/N), there are

joining and splitting interactions changing the number of traces of the spin chain by one.
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At order O(1/N2), in addition to second-order trace-changing processes, there is also an

interaction preserving the number of traces of the spin chain.

By interpreting the set of single-trace states as the excitation states of a single Type

IIA string in gravity dual, we learn that the worldsheet dynamics is trivial. As the spin-

chain Hamiltonian (as described by the dilatation operator) has no term exchanging letters

(spins), there cannot possibly be a ‘magnon’ excitation in the spin chain picture. This in

turn implies that there cannot possibly be a propagating worldsheet excitation in the string

picture. Roughly speaking, string is made of bits, but the bits do not interact each other

for any value of the string tension. Again, they exhibit topological character.

Once we take account of nonplanar contributions mentioned above, the spin chain

ceases to be topological. This is evident from the Feynman diagrammatics. At one loop

and beyond, there are nontrivial joining / splitting and exchange terms contributing to

the dilatation operator. In this regard, the joining and splitting of the spin chain and the

string interaction become nontrivial. The issue is outside the main focus of this paper, so

we shall relegate further elaboration elsewhere [30].

Finally, we remark that exactly the same argument applies also to the dibaryon oper-

ators, though this was the feature already present in the relativistic ABJM theory.

7 Conclusion

In this paper, we investigated gauge-invariant observables and their correlation functions in

the non-relativistic ABJM theory. We showed that the local gauge invariant observables are

all zero-norm states, and the correlation functions among them are trivial. We also showed

that Wilson loops are topological in the sense that the matter fields impart no radiative

corrections and their correlation functions coincide with those of the pure Chern-Simons

theory, depending only on link and knot of the contour. We further showed that the theory

is nevertheless non-topological since there are physically nontrivial correlation functions.

We illustrated a few of them by utilizing monopole operators and multi-local operators.

Although it has not been demonstrated yet, it must be that the non-relativistic ABJM

theory has a sensible gravity dual description. Indeed, massive deformation of the rela-

tivistic M2-brane gauge theory is known to have a dual geometry [36]. It remains to take

gravity counterpart of the non-relativistic limit.10 The results of our paper suggests that

this limit should lead to a very peculiar gravity dual. First of all, all the bulk fields must

have zero norm with µ = 0. Second, the Wilson loops, most likely represented by the

fundamental strings stretched toward the boundary, must be topological and tensionless.

Third, the gravity dual have a geometry of string scale and string theory defined on it is

topological. Fourth, some correlation functions involving monopole or multi-local operators

must be physically nontrivial. Fifth, it should be noted that the non-relativistic conformal

symmetry (Schrödinger symmetry) is not a part of the relativistic counterpart OSp(6|4).
Related to this, the moduli space of the non-relativistic ABJM theory is not related not in

10Instead of this systematics, [37] attempts a bottom-up approach to construct an M-theory solution.

The claimed solution, however, turns out not to have the requisite kinematical supersymmetry.
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any direct way to the moduli space of the relativistic ABJM theory — in fact, the latter

was lifted completely as soon as the mass deformation is introduced.

We emphasize that these peculiar aspects may not be particular to the non-relativistic

ABJM theory, and they may form a universality class to all non-relativistic conformal field

theories. For instance, suppose a dual conformal field theory is given by a generic Chern-

Simons-Matter theory where the total mass charge is a part of the gauge symmetry. Then

the triviality of the correlation functions among local observables and the topological nature

of the Wilson loops follow directly from the same argument as given in this paper. Notice

that, in this argument, supersymmetry plays a minor role. Consequently, it seems very

important to study other non-local objects, not conventionally studied in the AdS/CFT

correspondence, to reveal the dynamics of such non-relativistic CFTs.

Finally, we would like to comment on embedding of the non-relativistic AdS/CFT

backgrounds in the string theory proposed in [9–11] and in the M-theory proposed in [37].

A common thread of their backgrounds is that they all contain a null conical singularity.

One can then wrap any numbers of strings or M2 branes along the light-like compact

directions, rendering them effectively tensionless. In this sense, their background is unstable

and pathological as a ground state. A partial topological nature of the non-relativistic

ABJM theory discussed in this paper might be related to the instability of their string

background. Their singularity was removed once they introduced the finite temperature

and finite density. It is easy to see that the topological feature of the non-relativistic ABJM

theory no longer persists once we introduce finite temperature and finite density.

We strongly believe that this research stimulates further studies on the non-relativistic

AdS/CFT and the (non)local observables therein and the search for string or M theory

defined on putative holographic dual with fascinating topological structures.
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